Page 35 - 2024F
P. 35

28                                                                UEC Int’l Mini-Conference No.53







            g ≤ |v| ≤ G for g, G ∈ N. Another problem is      [5]  Peter Weiner. “Linear pattern matching
            defined as, for each position i in string S, finding  algorithms”. In: 14th Annual Symposium
            all substrings u 1 vu 2 , u 1 = u 2 where u 2 begins at  on Switching and Automata Theory (swat
            index i and the gap is constrained by g(i) ≤          1973). 1973, pp. 1–11. doi: 10.1109/SWAT.
            |v| ≤ G(i) for given functions g and G.               1973.13.

            5    Acknowledgments


            We would like to express our gratitude to Pro-
            fessor Hideo Bannai (Institute of Science Tokyo)
            and Professor Shunsuke Inenaga (Kyushu Uni-
            versity) for their valuable input regarding this
            research. Both Professors provided great insight
            into the workings of runs and ideas on their
            application to the problem of counting gapped
            repeats.




            References

            [1] Hideo Bannai et al. “The “Runs” The-
                 orem”. In: SIAM Journal on Computing
                 46.5 (Jan. 2017), pp. 1501–1514. issn: 1095-
                 7111. doi: 10.1137/15m1011032.
            [2] Dan Gusfield. “Algorithms on Strings,
                 Trees, and Sequences: Computer Science
                 and Computational Biology”. In: 1997.
                 url: https : / / api . semanticscholar .
                 org/CorpusID:263608249.
            [3] Andrei Popa and Alexandru Popa. “Ef-
                 ficient Algorithms for Counting Gapped
                 Palindromes”. In: 32nd Annual Sympo-
                 sium on Combinatorial Pattern Matching
                 (CPM 2021). Ed. by Pawe l Gawrychowski
                 and Tatiana Starikovskaya. Vol. 191. Leib-
                 niz International Proceedings in Informat-
                 ics (LIPIcs). Dagstuhl, Germany: Schloss
                 Dagstuhl – Leibniz-Zentrum f¨ur Infor-
                 matik, 2021, 23:1–23:13. isbn: 978-3-95977-
                 186-3. doi: 10.4230/LIPIcs.CPM.2021.
                 23.
            [4] Esko Ukkonen. “On-line construction of
                 suffix trees”. In: Algorithmica 14 (1995),
                 pp. 249–260. url: https : / / api .
                 semanticscholar . org / CorpusID :
                 6027556.
   30   31   32   33   34   35   36   37   38   39   40