Page 25 - 2025S
P. 25
18 UEC Int’l Mini-Conference No.54
(ICIEV) and 2019 3rd International Confer- with multi-scale content aggregation and
ence on Imaging, Vision & Pattern Recog- style contrastive learning. In: Proc. of the
nition (icIVPR). pp. 190–195. IEEE (2019) AAAI Conference on Artificial Intelligence.
vol. 38, pp. 6603–6611 (2024)
[12] Sarkar, R., Das, N., Basu, S., Kundu,
M., Nasipuri, M., Basu, D.K.: Cmaterdb1:
a database of unconstrained handwritten
bangla and bangla–english mixed script
document image. International Journal on
Document Analysis and Recognition (IJ-
DAR) 15, 71–83 (2012)
[13] Thamizharasan, V., Liu, D., Agarwal, S.,
Fisher, M., Gharbi, M., Wang, O., Jacob-
son, A., Kalogerakis, E.: Vecfusion: Vector
font generation with diffusion. In: Proc. of
IEEE Computer Vision and Pattern Recog-
nition. pp. 7943–7952 (2024)
[14] Wang, C., Zhou, M., Ge, T., Jiang, Y., Bao,
H., Xu, W.: Cf-font: Content fusion for
few-shot font generation. In: Proc. of IEEE
Computer Vision and Pattern Recognition.
pp. 1858–1867 (2023)
[15] Wang, W., Sun, D., Zhang, J., Gao, L.:
Mx-font++: Mixture of heterogeneous ag-
gregation experts for few-shot font gener-
ation. In: IEEE International Conference
on Acoustics, Speech and Signal Processing
(ICASSP). pp. 1–5. IEEE (2025)
[16] Wang, X., Li, C., Sun, Z., Hui, L.: Review
of gan-based research on chinese character
font generation. Chinese Journal of Elec-
tronics 33(3), 584–600 (2024)
[17] Xie, Y., Chen, X., Sun, L., Lu, Y.: Dg-font:
Deformable generative networks for unsu-
pervised font generation. In: Proc. of IEEE
Computer Vision and Pattern Recognition.
pp. 5130–5140 (2021)
[18] Xie, Y., Chen, X., Zhan, H., Shivakumara,
P., Yin, B., Liu, C., Lu, Y.: Weakly super-
vised scene text generation for low-resource
languages. Expert Systems with Applica-
tions 237, 121622 (2024)
[19] Yang, Z., Peng, D., Kong, Y., Zhang,
Y., Yao, C., Jin, L.: Fontdiffuser: One-
shot font generation via denoising diffusion