Page 25 - 2025S
P. 25

18                                                                UEC Int’l Mini-Conference No.54







                 (ICIEV) and 2019 3rd International Confer-       with multi-scale content aggregation and
                 ence on Imaging, Vision & Pattern Recog-         style contrastive learning. In: Proc. of the
                 nition (icIVPR). pp. 190–195. IEEE (2019)        AAAI Conference on Artificial Intelligence.
                                                                  vol. 38, pp. 6603–6611 (2024)
            [12] Sarkar, R., Das, N., Basu, S., Kundu,
                 M., Nasipuri, M., Basu, D.K.: Cmaterdb1:
                 a database of unconstrained handwritten
                 bangla and bangla–english mixed script
                 document image. International Journal on
                 Document Analysis and Recognition (IJ-
                 DAR) 15, 71–83 (2012)

            [13] Thamizharasan, V., Liu, D., Agarwal, S.,
                 Fisher, M., Gharbi, M., Wang, O., Jacob-
                 son, A., Kalogerakis, E.: Vecfusion: Vector
                 font generation with diffusion. In: Proc. of
                 IEEE Computer Vision and Pattern Recog-
                 nition. pp. 7943–7952 (2024)

            [14] Wang, C., Zhou, M., Ge, T., Jiang, Y., Bao,
                 H., Xu, W.: Cf-font: Content fusion for
                 few-shot font generation. In: Proc. of IEEE
                 Computer Vision and Pattern Recognition.
                 pp. 1858–1867 (2023)

            [15] Wang, W., Sun, D., Zhang, J., Gao, L.:
                 Mx-font++: Mixture of heterogeneous ag-
                 gregation experts for few-shot font gener-
                 ation. In: IEEE International Conference
                 on Acoustics, Speech and Signal Processing
                 (ICASSP). pp. 1–5. IEEE (2025)

            [16] Wang, X., Li, C., Sun, Z., Hui, L.: Review
                 of gan-based research on chinese character
                 font generation. Chinese Journal of Elec-
                 tronics 33(3), 584–600 (2024)

            [17] Xie, Y., Chen, X., Sun, L., Lu, Y.: Dg-font:
                 Deformable generative networks for unsu-
                 pervised font generation. In: Proc. of IEEE
                 Computer Vision and Pattern Recognition.
                 pp. 5130–5140 (2021)

            [18] Xie, Y., Chen, X., Zhan, H., Shivakumara,
                 P., Yin, B., Liu, C., Lu, Y.: Weakly super-
                 vised scene text generation for low-resource
                 languages. Expert Systems with Applica-
                 tions 237, 121622 (2024)

            [19] Yang, Z., Peng, D., Kong, Y., Zhang,
                 Y., Yao, C., Jin, L.: Fontdiffuser: One-
                 shot font generation via denoising diffusion
   20   21   22   23   24   25   26   27   28   29   30