Page 66 - 2025S
P. 66
UEC Int’l Mini-Conference No.54 59
analysis: Past, present, and future trends. [18] Islam, M., Ria, N.J., Ani, J.F., Masum,
IEEE Transactions on Evolutionary Com- A.K.M., Abujar, S., Hossain, S.A.: Deep
putation 27(1), 5–25 (2022) learning based classification system for rec-
ognizing local spinach. In: Advances in
[10] Cynthia, S.T., Hossain, K.M.S., Hasan, Deep Learning, Artificial Intelligence and
M.N., Asaduzzaman, M., Das, A.K.: Au- Robotics: Proceedings of the 2nd Interna-
tomated detection of plant diseases using tional Conference on Deep Learning, Arti-
image processing and faster r-cnn algo- ficial Intelligence and Robotics,(ICDLAIR)
rithm. In: 2019 International Conference on 2020. pp. 1–14. Springer (2022)
Sustainable Technologies for Industry 4.0
(STI). pp. 1–5. IEEE (2019) [19] Jiang, P., Chen, Y., Liu, B., He, D., Liang,
C.: Real-time detection of apple leaf dis-
[11] Dara, S., Tumma, P.: Feature extraction by eases using deep learning approach based
using deep learning: A survey. In: 2018 Sec- on improved convolutional neural networks.
ond international conference on electronics, IEEE Access 7, 59069–59080 (2019)
communication and aerospace technology
(ICECA). pp. 1795–1801. IEEE (2018) [20] Jogi, K.S., Prasad, R.: Detecting the
plant species using deep-convolutional neu-
[12] Dileep, M., Pournami, P.: Ayurleaf: a ral network (d-cnn) with internet of things
deep learning approach for classification of (iot). In: 2023 Third International Confer-
medicinal plants. In: TENCON 2019-2019 ence on Artificial Intelligence and Smart
IEEE Region 10 Conference (TENCON). Energy (ICAIS). pp. 66–70. IEEE (2023)
pp. 321–325. IEEE (2019)
[21] Kavitha, K., Sharma, P., Gupta, S.,
[13] Dong, J., Fuentes, A., Yoon, S., Kim, H., Lalitha, R.: Medicinal plant species detec-
Park, D.S.: An iterative noisy annotation tion using deep learning. In: 2022 First In-
correction model for robust plant disease ternational Conference on Electrical, Elec-
detection. Frontiers in Plant Science 14 tronics, Information and Communication
(2023) Technologies (ICEEICT). pp. 01–06. IEEE
(2022)
[14] Ghosh, S., Singh, A., Kumar, S.: Pb3c-cnn:
An integrated pb3c and cnn based approach [22] Krishna, D.S.S.V., Kumar, E.V., Goud,
for plant leaf classification. Inteligencia Ar- E.M.: A novel approach to identify medici-
tificial 26(72), 15–29 (2023) nal plant based on image processing (2023)
[15] Gulzar, Y.: Fruit image classification model [23] Mardiana, B.D., Utomo, W.B., Oktaviana,
based on mobilenetv2 with deep trans- U.N., Wicaksono, G.W., Minarno, A.E.,
fer learning technique. Sustainability 15(3), et al.: Herbal leaves classification based
1906 (2023) on leaf image using cnn architecture model
vgg16. Jurnal RESTI (Rekayasa Sistem dan
[16] Hussain, T., Shouno, H., Hussain, A., Teknologi Informasi) 7(1), 20–26 (2023)
Hussain, D., Ismail, M., Mir, T.H., Hsu,
F.R., Alam, T., Akhy, S.A.: Effresnet-vit: [24] Muneer, A., Fati, S.M.: Efficient and auto-
A fusion-based convolutional and vision mated herbs classification approach based
transformer model for explainable medical on shape and texture features using deep
image classification. IEEE Access (2025) learning. IEEE Access 8, 196747–196764
(2020)
[17] Ibrahim, N.M., Gabr, D.G., Rahman, A.,
Musleh, D., AlKhulaifi, D., AlKharraa, M.: [25] Mustofa, S., Emon, Y.R., Mamun, S.B.,
Transfer learning approach to seed taxon- Akhy, S.A., Ahad, M.T.: A novel ai-
omy: A wild plant case study. Big Data and driven model for student dropout risk anal-
Cognitive Computing 7(3), 128 (2023) ysis with explainable ai insights. Comput-