Page 67 - 2025S
P. 67
60 UEC Int’l Mini-Conference No.54
ers and Education: Artificial Intelligence 8, [33] Zargar, H.H., Zargar, S.H., Mehri, R., Taji-
100352 (2025) dini, F.: Using vgg16 algorithms for classi-
fication of lung cancer in ct scans image.
[26] Narvekar, C., Rao, M.: Flower classifica- arXiv preprint arXiv:2305.18367 (2023)
tion using cnn and transfer learning in cnn-
agriculture perspective. In: 2020 3rd inter-
national conference on intelligent sustain-
able systems (ICISS). pp. 660–664. IEEE
(2020)
[27] Pargaien, A.V., Singh, D., Chauhan, M.,
Negi, H., Chilwal, B., Pargaien, N.:
Identification of plant leaves having anti-
diabetic property using machine learning.
In: 2023 2nd International Conference on
Applied Artificial Intelligence and Comput-
ing (ICAAIC). pp. 195–200. IEEE (2023)
[28] Sharrab, Y., Al-Fraihat, D., Tarawneh,
M., Sharieh, A.: Medicinal plants recog-
nition using deep learning. In: 2023
International Conference on Multimedia
Computing, Networking and Applications
(MCNA). pp. 116–122. IEEE (2023)
[29] Singh, H., Singh, R., Goel, P., Singh, A.,
Sharma, N.: Automatic framework for veg-
etable classification using transfer-learning.
Int. J. Electr. Electron. Res 10(2), 405–410
(2022)
[30] Thanikkal, J.G., Dubey, A.K., Thomas, M.:
An efficient mobile application for iden-
tification of immunity boosting medicinal
plants using shape descriptor algorithm.
Wireless Personal Communications pp. 1–
17 (2023)
[31] Vallabhajosyula, S., Sistla, V., Kolli,
V.K.K.: Transfer learning-based deep en-
semble neural network for plant leaf dis-
ease detection. Journal of Plant Diseases
and Protection 129(3), 545–558 (2022)
[32] Xue, J., Fuentes, S., Poblete-Echeverria,
C., Viejo, C.G., Tongson, E., Du, H., Su,
B.: Automated chinese medicinal plants
classification based on machine learning
using leaf morpho-colorimetry, fractal di-
mension and visible/near infrared spec-
troscopy. International Journal of Agri-
cultural and Biological Engineering 12(2),
123–131 (2019)