Page 51 - 2024F
P. 51

44                                                                UEC Int’l Mini-Conference No.53

                                                                        53rd UEC International Mini-Conference, 3rd~4th March, 2025, The University of Electro-Communications, Chofu, Tokyo, Japan
                                       Interferometric Evaluation of Stokes Camera
                                                *Akter MONIA 1,2 , Yoko MIYAMOTO 1,2
                                    1 Department of Engineering Science, the University of Electro-Communications
                                     2 Institute for Advanced Science, the University of Electro-Communications
                                             1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
                                                  *Email: a2443014@edu.cc.uec.ac.jp
                               Keywords: Stokes parameter, Stokes camera, interferometer, spatial resolution, polarization fringes.
                                                        Introduction
               Stokes parameter and Stokes Camera:
               • The Stokes parameters are a set of values that describe the polarization state of an   S 0 = I H + I V
                 electromagnetic oscillation.                                             S 1 = I H − I V  (1)
               • A Stokes camera measures the polarization state as a function of position by combining intensity   S 2 = I RD − I LD
                 distributions recorded under different polarization analyzer settings.   S 3 = I RC − I LC
               • To determine the Stokes parameters, at least four polarization components are required.
                                 Objective                                     Optical setup
               Evaluation of the spatial resolution of Stokes camera:  Generation of polarization fringes:
               • To evaluate the spatial resolution of the Stokes camera (Photonic   • The interferometer is used to create variations of polarization states
                 Lattice WPI 200) using Fourier analysis.     with different spatial frequencies, and contrast in recorded Stokes
                                                              parameters is measured.
                                                                               [HWP = Half Wave Plate, BS = Beam Splitter,
                                                                                QWP = Quarter Wave Plate, M = Mirror]

                        Polarization   Stokes camera: WPI-200
                       interferometer




                                                                                Interferometer
                       Analysis using   Recorded Stokes parameters
                      Fourier transform  with fringe structure
                                                                              S1                  S1
                              Fourier Analysis
                                                                                                    Left   Right
                                        ∗
              g x,y = a x,y + c x,y exp 2πi f x 0 x + f y0 y + x,y exp −2πi f x 0 x + f y 0 y  2  Circular Circular
                                                                                Interferograms
                                     ∗
              G f X ,f Y = A(f X ,f Y )+C(f X − f x 0 ,f Y − f y 0 )+ C (−f X − f x 0 ,−f Y − f y 0 )    3
               ′                             4
              G f X , f Y = C f X − f x0 , f Y − f y0 H f X − f x0 , f Y − f y0  Hann window filter and
                  ′
              ℱ  −1  G f X , f Y  = c x, y ∗ h x, y (5)                       tuning filter width
              Contrast, b(x, y) =2|c(x, y)|  (6)









                                                                                                 −2
                                                             The maximum amplitude saturates at filter width 21x21 L , then
                                                             increases again due to noise.
                      |G f X ,f Y |    |c x,y ∗ h x,y |
                                         Result Evaluation                                Conclusion
               Contrast vs Spatial Frequency Graph:
               Interference between diagonally polarized beams:   Interference between circularly polarized beams:
                                                                                ➢ The contrast is decreasing beyond spatial
                                                                                 frequency 0.20 pixel⁻¹ for interference between
                                                                                 diagonally polarized light.
                                                                                ➢ The contrast is gradually decreasing within
                                                                                 the frequency range of 0.04 to 0.12 pixel⁻¹.

                     S1                                                  S3                                                  S1                     S2
                References:
               [1] S. Nagai, M. Akter, and Y. Miyamoto, Optical Manipulations and Structured Materials Conference 2024.
               [2] M. Akter, S. Nagai, and Y. Miyamoto, Joint Symposia on Optics, Optics and Photonics Japan 2024.
               [3] M. Takeda, H. Ina, and S. Kobayashi, J. Opt. Soc. Am.72 (1982) 156.
   46   47   48   49   50   51   52   53   54   55   56